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ABSTRACT: While seasonal outlooks have been operational for many years, until recently the extended-range timescale referred to as
subseasonal-to-seasonal (S2S) has received little attention. S2S prediction fills the gap between short-range weather prediction and long-range
seasonal outlooks. Decisions in a range of sectors are made in this extended-range lead time; therefore, there is a strong demand for this new
generation of forecasts. International efforts are under way to identify key sources of predictability, improve forecast skill and operationalize
aspects of S2S forecasts; however, challenges remain in advancing this new frontier. If S2S predictions are to be used effectively, it is
important that, along with science advances, an effort is made to develop, communicate and apply these forecasts appropriately. In this
study, the emerging operational S2S forecasts are presented to the wider weather and climate applications community by undertaking the first
comprehensive review of sectoral applications of S2S predictions, including public health, disaster preparedness, water management, energy
and agriculture. The value of applications-relevant S2S predictions is explored, and the opportunities and challenges facing their uptake are
highlighted. It is shown how social sciences can be integrated with S2S development, from communication to decision-making and valuation
of forecasts, to enhance the benefits of ‘climate services’ approaches for extended-range forecasting. While S2S forecasting is at a relatively
early stage of development, it is concluded that it presents a significant new window of opportunity that can be explored for application-ready
capabilities that could allow many sectors the opportunity to systematically plan on a new time horizon.
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1. Introduction

There is growing interest across the applications community in
understanding and using a new generation of extended-range
weather predictions that are currently in development by
meteorological centres around the world. While long-range
monthly and seasonal outlooks have been operational in some
regions for many years (and are the subject of increasing
research initiatives to explore and advance their application) the
extended-range timescale, which sits between the medium- and
long-range forecasting timescales (i.e. beyond 10 days and up
to 30 days), has received minimal attention until recently. The
extended-range timescale has in recent years become referred to
as the subseasonal-to-seasonal (or S2S) forecasting range and is
generally regarded as bridging the gap between weather fore-
casts and monthly or seasonal outlooks (Figure 1(a)) (Kirtman
et al., 2014; Robertson et al., 2014; Vitart, 2014a) This timescale
has long been seen as a ‘predictability desert’ (Vitart et al.,
2012) as it is notoriously difficult to provide skilful predictions
on subseasonal or monthly timescales (Hudson et al., 2011);
however, recent advances have spurred an increasing interest
in S2S prediction (Brunet et al., 2010; Shapiro et al., 2010). At
least 10 international weather centres now have some capability
for issuing experimental or operational S2S forecasts, including
the European Centre for Medium-range Weather Forecasting
(ECMWF), the National Oceanic and Atmospheric Administra-
tion (NOAA), the China Meteorological Administration (CMA)
and the UK Met Office (Vitart, 2014a). While S2S forecasting
is still in development, the potential availability of these fore-
casts provides a significant ‘window of opportunity’ whereby
S2S predictions can start to be explored for both operational
forecasting and application-focused capabilities to complement
existing forecast services.

The ongoing WMO World Weather Research Programme
(WWRP)–World Climate Research Programme (WCRP)
Sub-seasonal to Seasonal Prediction Project (Vitart et al., 2012;
Robertson et al., 2014; Vitart, 2014a) (http://s2sprediction.net/)
is aimed at improving forecast skill and understanding of the
S2S timescale and promoting its uptake. This is the first collabo-
ration between the WWRP and the WCRP and contributes to the
WMO Global Framework for Climate Services (GFCS) which
aims to help society cope with extreme events through better
forecast accuracy on longer lead times. A key output of this
collaborative project is a data repository of near real-time S2S
forecasts and hindcasts (Vitart et al., 2016) produced by several
operational meteorological institutions (http://apps.ecmwf.int/
datasets/data/s2s and http://s2s.cma.cn), providing valuable
repositories against which the potential skill of multiple model
predictions on the S2S timescale can be evaluated and their
usability for societal applications assessed for the first time.
This effort closely aligns with other WMO initiatives, such as
the THORPEX Interactive Grand Global Ensemble (TIGGE)
project, the HIWeather project that has identified connections
to S2S timescales through the forecasting of weather-related
hazards, and ongoing efforts through the WMO Lead Center for
Long-range Forecast Multi-model Ensemble (LC-LRFMME)
project to extend into the S2S timescale.

The expansion into S2S forecasting has been triggered by a
combination of growing demand from the applications commu-
nity and progress in identifying and simulating key sources of
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S2S predictability (Vitart, 2014a). Although there are efforts
under way to operationalize aspects of S2S forecasts (Robert-
son et al., 2014), the S2S timescale is a developing frontier
for forecasting science. S2S forecasting represents an opportu-
nity for a range of applications, potentially enabling many sec-
tors to react and plan systematically. However, to date there
has not been a co-ordinated effort to examine the potential of
application-relevant forecasts on the S2S timescale and a demon-
stration of how these forecasts can be employed to maximize
societal benefit.

In this study the advances since Brunet et al. (2010) first
promoted the WWRP–WCRP weather–climate collaboration
to jointly tackle the development of S2S prediction science
are reviewed. Focusing on potential user applications, recent
advancements are drawn on to demonstrate the status and
prospects of S2S prediction, highlighting how they can be used
and where the key challenges remain.

2. Forecasting on the S2S timescale

Accurate climate prediction requires a good representation of
weather phenomena as well as the underlying physical laws that
apply to all prediction timescales (Bauer et al., 2015). While
short- to medium-range weather forecasting is based on initial
atmospheric conditions, for seasonal prediction the initial condi-
tions of the coupled land–ocean system are more important, with
the rapidly varying components of the atmosphere often less well
predicted and initialized. The S2S timescale falls between these
time ranges and is influenced by both the initial conditions of
the atmosphere and the more slowly evolving boundary condi-
tions such as sea surface temperatures (SSTs), soil moisture and
sea-ice components. It is these different time and space scales of
the atmosphere, land and ocean, and the ability to predict them,
which make S2S forecasting a major challenge (e.g. Chen et al.,
2010; Doblas-Reyes et al., 2013; Vitart, 2014a).

As with seasonal forecasting, S2S predictive skill relies on
more than just realistic initialization conditions and SST, but
also large-scale circulation modes in the climate system, such as
the El Niño–Southern Oscillation (ENSO), the Madden–Julian
Oscillation (MJO), the Indian Ocean Dipole and the North
Atlantic Oscillation, and their known influence on specific
weather phenomena including extreme events. For example,
White et al. (2013), using the POAMA model, showed that
increased skill in predicting extreme heat during the winter
months over northern Australia comes mainly from La Niña peri-
ods, whereas skill over eastern and southeastern Australia comes
from El Niño periods, highlighting the importance of the state
of the ENSO for regional S2S prediction. S2S forecasts, how-
ever, are more generally limited geographically, working best
in the Tropics due to higher-frequency climate modes such as
the MJO, which is the dominant mode of convective activity
in the mid to high latitudes and offers an enhanced source of
predictability (e.g. Vitart, 2014a). MJO predictability, in par-
ticular, has improved significantly over the last decade, with
MJO teleconnections over the Northern and Southern Extratrop-
ics improving dramatically through better representation of the
MJO in the ECMWF model (Vitart, 2014b). The vertical resolu-
tion of the ocean component of forecasting systems, particularly
in the top ocean layer, has also been documented to have a sig-
nificant impact on the prediction of the MJO on S2S timescales
through a stronger diurnal cycle of SST (Woolnough et al., 2007).
Increased model resolution is expected to improve the forecast
skill by allowing more physical processes to be resolved (Vitart,
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Figure 1. (a) Qualitative estimate of forecast skill based on forecast range from short-range weather forecasts to long-range seasonal predictions,
including potential sources of predictability. Relative skill is based on differing forecast averaging periods. (b) A schematic diagram highlighting the
relationship between the subseasonal-to-seasonal (S2S) ‘extended-range’ forecast range and other prediction timescales, with examples of actionable
information that can enable decision-making across sectors. Actions are examples only and are not exclusive to a forecast range. (a) Adapted by
Elisabeth Gawthrop from an original figure by Tony Barnston, both International Research Institute for Climate and Society; edited and reproduced
with permission. (b) Based on Meehl et al. (2001), Hurrell et al. (2009) and Goddard et al. (2014). Definitions are based on WMO meteorological

forecasting ranges: http://www.wmo.int/pages/prog/www/DPS/GDPS-Supplement5-AppI-4.html.

2014a). Initial soil moisture conditions have also been shown
to increase in particular the accuracy of both precipitation and
temperature predictions on the S2S timescale, especially for sum-
mer extreme temperatures; however, the use of sea-ice condi-
tions is a largely untapped and unknown source of potential pre-
dictability (Doblas-Reyes et al., 2013).

A number of persistent biases and errors, however, still exist in
most climate simulations, such as tropical precipitation and low

cloud cover (e.g. Randall et al., 2007). Some of these biases arise
solely from the errors in the models and some may arise from the
systematic misrepresentation of the coupled atmosphere–ocean
feedbacks, which may compound existing errors or generate new
biases (Brunet et al., 2010; Vitart, 2014a). The lack of vegetation
components and stratospheric disturbances in current forecast
models are other impediments to improving forecasts on S2S
timescales (Brunet et al., 2010; Doblas-Reyes et al., 2013).
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3. The information gap

3.1. Unlocking the potential of S2S forecasting

Operational forecasting centres routinely issue weather and cli-
mate information products, but there remains a gap between
what various industries and sectors of society need and what
forecasters can produce. While weather forecasts have been
proved to be useful for short-term decision-making (Brunet
et al., 2010), short-range weather forecasting, where predictabil-
ity mainly comes from initial atmospheric conditions, has funda-
mental physical limits (i.e. up to about 10 days) (e.g. Slingo and
Palmer, 2011). In contrast, instead of forecasting the weather for
a given day, longer lead time forecasts provide information about
the likelihood of averaged weather, such as rainfall totals, typi-
cally over periods up to a season in length. Seasonal forecasts do
not predict the weather at a set location or time; instead, they tell
us about the likelihood of shifts from the normal climatic con-
ditions or, put another way, a shift in the underlying probability
distribution, where predictability is driven primarily by slowly
varying components of the Earth system, such SST.

Society is used to short- to medium-term weather forecasts,
but is still less familiar with longer lead time forecasts. Provid-
ing a forecast for increased/decreased likelihoods is not adequate
for the need for reliable, actionable information on the timing,
location and scale of weather events. For example, seasonal fore-
casts of oncoming ‘colder than average’ winters or ‘hotter than
average’ summers, often delivered through mainstream media
outlets, are the first stage of communication that can lead to a mis-
interpretation of what longer lead time forecasts are. Users are
often exposed to someone’s interpretation of forecasts, and the
terminology typically used, such as ‘increased or decreased like-
lihood’ and ‘normal conditions’, are relative to past climate and
therefore implicitly require additional knowledge to understand.

Communications issues therefore surround S2S forecasts given
their probabilistic nature, yet it is recognized that to be of value
S2S predictions must realistically represent day-to-day weather
fluctuations and statistics (Brunet et al., 2010). S2S predictions
have the potential to support decision-makers through the ongo-
ing development of skilful forecasts of high-impact weather
events (e.g. Vitart, 2014a). For example, this has been demon-
strated by skilful predictions of phenomena such as tropical
cyclones on lead times of up to 28 days (Figure 2), but it is yet
to be determined if S2S forecasts can predict such events with
sufficient skill and reliability for many applications. Despite this,
inroads have been made with forecast skill on the S2S timescale
and there lies a largely unexplored middle ground between what
is required and what is possible.

Vitart (2014a) also notes that while many end-users have
benefited by applying weather and climate forecasts in their
decision-making, there is evidence to suggest that such infor-
mation is under-used across a wide range of economic sectors
(e.g. O’Connor et al., 2005; Rayner et al., 2005; Morss et al.,
2008). Indeed, there needs to be a distinction between what is
‘useful’ and what is ‘usable’ information, reflecting the different
ways that forecasters and users perceive scientific information
(Lemos et al., 2012). Forecasters may make the assumption that
knowledge is useful when they conduct research without fully
understanding potential users’ decision-making processes and
contexts; in contrast, users may not know how they might make
use of S2S forecasts (or may have unrealistic expectations of
them), of how they fit within their decision-making processes,
and thus choose to ignore them, despite their usefulness (Lemos
et al., 2012).

It has been shown that an interactive, co-production approach
to science and decision-making between information produc-
ers and users positively affects the rate of information use
(e.g. Lemos and Morehouse, 2005; Feldman and Ingram, 2009;
Lemos et al., 2012) as well as the effective communication
of decision-relevant science. Prioritizing collaboration between
scientists and those who rely on climate and weather infor-
mation to make policy and management decisions through a
‘co-exploration’ approach supports this co-production of usable
information (Meadow et al., 2015; Steynor et al., 2015), espe-
cially when exploring decisions where needs or sensitivities are
yet to be identified. This iterative process explores the limits of
climate model data in a place-based context that recognizes the
complex nature of decision-making and goes beyond the simplis-
tic dichotomy of ‘climate services’ and ‘end-users’ by incorpo-
rating multifocal learning across the decision-making space (e.g.
Hurrell et al., 2009).

At the same time as understanding the ‘information gap’, there
is a need to understand user needs better, including identifying
potential change agents and ‘champions’ who can communicate
new information effectively, recognizing competing stakeholder
goals and dealing with user-centred information in innovative
ways.

In support of understanding user needs, there is an additional
need to increase awareness of the S2S timescale through better
data visibility and accessibility. S2S data archives such as the
North American Multimodel Ensemble (NMME; Kirtman et al.,
2014) and the new WWRP–WCRP S2S project repository are
improving access to forecasts, as well as providing information
about forecast uncertainty and quality (e.g. Slingo and Palmer,
2011). A lack of information about the accuracy of such forecasts
precludes users from making effective use of them, whereas
a more thorough understanding of forecast performance may
help decision-makers determine how much and when to rely
on them (Hartmann et al., 2002). There may also be a lack of
understanding and appreciation of the complexity of weather and
climate processes and the yet-to-be quantified forecast skill on
the S2S timescale (from the decision-makers’ perspective) and
of the numerous facets involved in decision-making (from the
weather and climate scientists’ point of view).

3.2. Putting the user first

S2S prediction is ultimately applied research with a potentially
significant value to society and is an opportunity to create a sci-
entific discipline characterized by co-design and co-production
between the scientific and the application communities. Tradi-
tional applied research can be described by the linear (sequen-
tial) model of research and innovation where scientific discovery
precedes innovation (i.e. the process in which the scientific find-
ings are transferred into applications). A contrasting model is
the user-centred model of innovation (e.g. Lemos et al., 2012),
referred to as the climate services concept, in order to meet
the demand for customized climate-related tools, products and
information (EU COM, 2015). This model puts an emphasis on
the role played by users in the development and improvement
of products and services, which can be used to illustrate the
top-down versus bottom-up debate.

There is an ongoing debate on the pros and cons of top-down
and bottom-up approaches (e.g. Dessai and Hulme, 2004; Ray
and Webb, 2016). The top-down approach follows the sequence
of first projecting future emissions of greenhouse gases, then
developing climate scenarios, and then studying impacts and
adaptation options; in contrast, a bottom-up approach starts from

© 2017 Royal Meteorological Society Meteorol. Appl. 24: 315–325 (2017)
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Figure 2. Ensemble prediction of Tropical Cyclone Pam which made landfall in Vanuatu on 13 March 2015. (a)–(d) Weekly averaged probability
of a tropical cyclone strike within 300 km for (a) 22–28 days, (b) 15–21 days, (c) 8–14 days and (d) 1–7 days forecast lead time. Predictions made

using the European Centre for Medium-range Weather Forecasting Ensemble Prediction System.

a given system and then studies vulnerabilities (i.e. the degree
to which the system is susceptible to, and unable to cope with,
adverse impacts of climate change). Most probably, the most
successful approach for forecasting on longer lead times such
as S2S needs to include a combination of both. For example,
experience in the UK from a national top-down probabilistic cli-
mate service demonstrated that, although the probability-based
climate information provided greater credibility, there was still
a requirement to tailor the climate information generated so
that stakeholders could use the information in decision-making
(Tang and Dessai, 2012).

Recent efforts in Europe, such as the EUPORIAS project
(http://www.euporias.eu/) (e.g. Taylor et al., 2015; Soares and
Dessai, 2016), have developed semi-operational prototypes of
climate services to address the needs of specific users on sea-
sonal to decadal timescales. By applying a similar user-centred
climate services approach, the S2S research community could
similarly increase the likelihood for successful development of
S2S predictions. In doing so, the scientific community should
focus on working with users to understand their decisions,
including which ones are climate/weather-sensitive, and on
what timescales; efforts to determine specifically what infor-
mation might be of interest to users is then the next step after
understanding the decisions (Ray and Webb, 2016). Decision
dependences across a range of end-users could be determined
through user-centred studies, including assessing which infor-
mation, spatial and temporal scales and locations are most rel-
evant to the seamless weather and climate services approach
(e.g. Graham et al., 2011; Vaughan and Dessai, 2014). How-
ever, the weather and climate community might engage with
individual sectoral decision-makers in cases in which user stud-
ies have already matched the decision-maker with the forecast

product. Scientists and users could co-develop tools and pro-
cesses for fostering the joint development of S2S predictions,
with stakeholder-based modelling (Voinov and Bousquet, 2010)
or co-exploration/co-production processes (Lemos and More-
house, 2005; Meadow et al., 2015; Steynor et al., 2015) involving
the user community not only as consumers but as co-producers
of climate information. Climate services need to move towards
a demand-driven and science-informed approach and bound-
ary organizations will need to focus on use-inspired research
(Lourenço et al., 2015). Bringing partner boundary organizations
into the process for co-production, co-exploration and communi-
cation of information, including translation of scientific products
into usable formats, balances the trade-offs between salience,
credibility and legitimacy and increases the potential overall
uptake of climate information (McNie, 2007).

Collaboration and co-production across sectors and disciplines
is key to narrowing the gap between S2S forecast information and
application; a transformation is therefore needed in the way both
industry and the weather and climate community conceptualize
and communicate S2S predictions.

4. Potential sectoral applications of S2S predictions

The primary rationale for international efforts in pursuing
a seamless weather-to-climate prediction process, which
by default includes the S2S timescale, is that the resulting
information influences decisions across predictive timescales,
contributing to objectives such as protection of life and property,
enhancement of socio-economic well-being and sustainability
of the environment (Brunet et al., 2010). A range of efforts is
under way to operationalize aspects of S2S forecasts that may be
used to demonstrate the potential value of application-relevant
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S2S products, such as the NOAA Climate Prediction Center’s
operational outlooks and the Tropics Hazards and Benefits
Outlook. However, S2S predictions provide new opportuni-
ties for user-centred applications because many decisions fall
into the interceding S2S timescale between the well estab-
lished and used short- to medium-range weather forecasts on
one side and seasonal forecasts on the other. Where exist-
ing decision processes exist that already use information
on these other timescales, there may be readiness to take
up this new forecast information more easily. S2S forecasts
therefore provide a significant opportunity to provide action-
able information on this relatively unexplored applications
time horizon.

In the following sections, some of the potential sectoral uses
of S2S forecasts are reviewed, highlighting key decisions that
can be made on this timescale and their information requirements
(Figure 1(b)).

4.1. Humanitarian sector

There is strong demand in the humanitarian sector for reli-
able longer-range forecasts (Braman et al., 2012), particularly of
extreme events such as floods and droughts, and it is the S2S
timescale where many risk reduction and disaster preparedness
actions can be taken to mitigate impacts. S2S forecasts offer the
opportunity for disaster risk reduction (DRR) managers to track
the progress of the slowly evolving, large-scale climate modes
that may have been predicted to shift in a preceding seasonal
outlook, therefore supporting the transition from seasonal out-
looks to weather forecasts to inform both disaster planning and
systematic response (Tadesse et al., 2016).

In this context, the Red Cross Climate Centre have adopted the
Ready-Set-Go! approach to decision-making for disaster man-
agement that uses short- to long-range predictions (Goddard
et al., 2014). Seasonal forecasts can provide the ‘Ready’ mon-
itoring information and early contingency planning such as vol-
unteer training; subseasonal forecasts provide the ‘Set’ early
warnings and alerting of volunteers; and short-range weather
forecasts the ‘Go!’ activation stage, including evacuation and
distribution of aid (Vitart, 2014a). This concept highlights an
increased/decreased likelihood of a particular event occurring
over the forecast period, empowering DRR managers to adapt
and react accordingly to instigate preparedness activities during
the ‘Set’ phase as well as supporting the crucial shift to short-term
actions in the ‘Go!’ phase.

Many of the disaster preparedness actions that can be taken
based on increased risk of an extreme event require time to
activate. Procurement of disaster response supplies can take
several weeks (e.g. Boston Consulting Group, 2015) and is
often the reason that actual response time to a disaster can
lag well behind the event itself. While a short-term forecast
allows for a head-start, a S2S forecast would allow for such
response materials to be pre-purchased and prepositioned in
the at-risk region in advance of the actual event, allowing for
more immediate responses. Similarly, supplies needed for risk
reduction actions, such as pesticides for mosquito fumigation,
chlorine tablets for water purification, or sandbags to reinforce
river banks, are subject to the same time constraints as the
response materials. The prepositioning of emergency supplies
has been shown to yield a return on investment of between 1.6
and 2.0 (Boston Consulting Group, 2015).

Continuing the Ready-Set-Go! concept, there is a number of
quick and resource-independent actions that can then be taken
by vulnerable people a few days in advance of a potential

disaster, including evacuation and preparing food or water to last
through the emergency period. Such actions appear in heat wave
early warning plans (e.g. Ebi et al., 2003; Knowlton et al., 2014)
and cyclone preparedness plans (e.g. Roy et al., 2015), which
could be expanded to include ‘Ready’ actions within the S2S
timescale. The Sendai Framework for Disaster Risk Reduction
2015–2030 (UNISDR, 2015) points to an opportunity to connect
the joint weather and climate communities’ efforts surrounding
S2S prediction to global DRR activities and planning, as well
as using seamless forecasting and climate service approaches.
Priority 4 of the Framework recommends investment in the
development, maintenance and strengthening of people-centred,
multi-hazard and multi-sectoral forecasting and early warning
systems, developed through a participatory process and tailored
to the needs of users.

Advances in S2S prediction, specifically if focused towards
extreme events, could allow the humanitarian sector to react
systematically before potential disasters, saving lives and liveli-
hoods through a better informed early response.

4.2. Public health

Brunet et al. (2010) highlighted public health as one of the key
potential domains of application of seamless weather-to-climate
forecasts, where decisions cover a wide range of temporal scales
that directly relate to positive health outcomes (e.g. expected dis-
ease outbreak patterns, available medical supplies, poverty indi-
cators). Heat waves, for instance, are amongst the weather events
that have the strongest societal impact with severe disruption
of activities and significant loss of life. In the 2003 European
heat wave, health authorities estimated that about 14 000 died
in France alone (Vitart, 2005; Murray et al., 2012). The predic-
tion of the evolution of such an extreme event (including onset,
persistence and decay) a few weeks in advance would be par-
ticularly useful (Vitart, 2014a). Case studies of subseasonal heat
wave prediction are starting to demonstrate significant promise
(e.g. Vitart, 2005; Hudson et al., 2015); however, issues around
the accuracy of forecasts, especially for predicting the timing,
duration, location and severity of heat events (e.g. Perkins and
Alexander, 2013), as well as a lack of an internationally recog-
nized definition, make heat wave forecasting complex and diffi-
cult to tailor to individual users’ needs.

The potential benefits of S2S applications are perhaps great-
est in developing nations, especially in Africa where at least 30
climate-sensitive diseases pose a major threat to the lives and
livelihoods of millions of people. More than 500 million Africans
live in regions where malaria is endemic, which is highly cor-
related with the seasonal climate (Brunet et al., 2010). Malaria
forecasting on seasonal timescales has been well documented,
including the work of Morse et al. (2005), which shows skilful
1 month lead seasonal predictions using a malaria transmission
model driven with output from seasonal predictions, and that of
Thomson et al. (2006) and MacLeod et al. (2015) which demon-
strates skilful malaria epidemic forecasts in Africa 2 months
before the start of the season.

It is likely, however, that one of the major challenges with
integrating S2S predictions into public health practices will
be working with an initially less familiar (and perhaps less
receptive) set of decision-makers than some other sectors. The
necessary infrastructure (e.g. near real-time hospital patient data)
may be in place in some regions to develop an operational
weather-related hospital admissions forecast, but not in others.
In developing country contexts, logistical access to forecasts and
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data has its own additional challenges and may be reliant on
humanitarian disaster-related activities.

4.3. Energy

Weather-related risk is a primary driver for energy pricing, pro-
duction and usage. Because formal decision-making processes
already exist within the energy generation sector, it may be eas-
ier to develop successful relationships with this sector than many
other sectors with less formal practices (Brunet et al., 2010).
For instance, it is routine practice for the wind energy sector to
use short-range weather forecasts (Barthelmie et al., 2008; Foley
et al., 2012) and, to a lesser degree, seasonal outlooks (Roul-
ston et al., 2003). Taylor and Buizza (2003), for example, show
that energy demand scenarios based on ensemble predictions
are more accurate than those produced using traditional weather
forecasts up to 10 days in advance; therefore, S2S forecasts could
be used to support these activities by hedging for anticipated
energy peaks and other weather-related energy trading opportu-
nities and risks.

In recent years, wind power has experienced rapid growth,
contributing close to 5% of global electricity production (Pryor
and Barthelmie, 2010). One of the biggest challenges facing the
wind power industry is intermittency, where energy grid opera-
tors must match production to demand at all times, irrespective of
whether wind energy is produced or not (Albadi and El-Saadany,
2010). S2S wind speed forecasts could help address the chal-
lenge of intermittency by enabling transmission service opera-
tors to plan operations further ahead and increase grid efficiency
(Pinson, 2013), although at present only mean wind values (zonal
and meridional) are available on the S2S timescale. However,
as S2S forecasts become more skilful and more complete, grid
operators may further optimize the pricing system by using fore-
casts relevant to supply (e.g. wind speed for wind power, pre-
cipitation and temperature for hydropower operations) as well
as demand (especially temperature) to inform switching on and
off longer-start fuel sources such as nuclear. This challenge of
balancing a fluctuating wind energy resource with more stable
energy sources will only grow as more wind power capacity is
installed.

Related to this, S2S forecasts could be used to manage distribu-
tion and transmission infrastructure and maintenance scheduling.
For example, specialist maintenance vessels are scheduled sev-
eral weeks in advance for offshore wind farm maintenance and
installation. Work is halted and money lost when high wind and
waves prevent operations. At present the decision to leave port is
informed by current wave height and trend over previous hours,
but a reliable S2S forecast of an optimal operational window
could potentially save money and minimize risks.

4.4. Water management

Most international operational forecast centres issue flood
forecasting and warning services based on short-range rainfall
forecasts. At the other end of the forecasting timescale, many
meteorological/hydrological centres have been issuing proba-
bilistic seasonal streamflow forecasts as part of climate outlook
services for many years, i.e. 3 month outlooks of total flow
volumes rather than flood forecasts (e.g. Wood and Lettenmaier,
2006, in the United States; Robertson and Wang, 2012, in
Australia), or have documented needs for S2S forecasts in
short-term water management decisions (e.g. Raff et al., 2013).
Seasonal streamflow forecasts are contingent on climate informa-
tion for short-term planning (e.g. water allocation) and setting up

contingency measures during extreme years. However, the water
allocated based on seasonal forecasts issued at the beginning of
the season requires revision using updated (i.e. subseasonal) fore-
casts throughout the season (Sankarasubramanian et al., 2009).

There have been some efforts to forecast streamflow on
longer-range timescales, with Bennett et al. (2014) finding posi-
tive forecast skill for higher streamflows in the 1 month lead time
in southeast Australia, Sankarasubramanian et al. (2009) mod-
elling seasonal and subseasonal water allocation in the Philip-
pines, and Werner et al. (2005) using operational streamflow
forecasting in the United States. Similarly, whilst specific flood
predictions cannot be made on S2S lead times (i.e. they reflect
risks but are not intended for predicting the timing, frequency,
severity or extent of flood), S2S forecasts could be employed
to highlight an increased chance of flooding where total stream-
flow volume has already been predicted to be high for a given
season (White et al., 2015). African hydrological centres, for
example, would benefit from S2S forecasts of the onset and
subseasonal evolution of the rainy season, whilst S2S forecasts
of the frequency of daily rainfall amount could be relevant to
rain-dependent agricultural applications and flood prediction in
the Tropics (Robertson et al., 2014).

S2S forecasting therefore provides a significant opportunity
to bring together the flood warning and streamflow forecasting
communities in a seamless hydrological forecasting service,
extending flood forecasting to longer lead times through the
integration with rainfall runoff hydrological models (White et al.,
2015) and improving water resource allocation and management
decision-making on timescales less than a season.

4.5. Agriculture

The agriculture sector is one of the most advanced user groups
in terms of using weather forecasts and outlooks to support
operational decisions on the timing of irrigation, spraying and
harvesting (e.g. Meinke and Stone, 2005; Harrison et al., 2007,
and references therein). Clements et al. (2013) show the S2S
timeframe to be highly relevant in agriculture, noting studies
that evaluated the use of meteorological information in agricul-
ture for crop management, irrigation decisions, product market-
ing, input use (e.g. fertilizers) and commodity pricing. Using a
similar approach to the Ready-Set-Go! concept, by extending
downward from the seasonal scale, a seasonal forecast of rainfall
totals might inform strategic decisions regarding crop-planting
choices, whereas S2S forecasts of rainfall extremes or heat waves
could help irrigation scheduling and pesticide/fertilizer applica-
tion (Vitart, 2014a). S2S forecasts could be used as dynamic
updates to an existing cropping calendar, such as for the estima-
tion of crop yields (Vitart, 2014a) to help alleviate global food
security issues (CGIAR, 2009). Regional mechanisms such as
the strong intraseasonal oscillation, which is a major cause of
monsoon breaks within the Indian monsoon season, could add
valuable information for irrigation scheduling.

The experienced user-base within the agriculture sector is very
familiar with the need to express seasonal forecasts in terms
of daily weather characteristics, such as dry spells during criti-
cal growth periods (e.g. Verbist et al., 2010), and presents per-
haps one of the best opportunities to bridge the gap between
the weather and climate forecasting timescales. As weather
impacts are just one of many stressors shaping users’ decisions
in the agriculture sector, to integrate S2S forecasts success-
fully into existing decision-making practices, highly participa-
tory, context-specific dialogues, aided by modelling approaches
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Table 1. Categorized challenges and opportunities related to applications of S2S forecasts.

Category Challenges Opportunities

Systematic model deficiencies Systematic misrepresentation of coupled
atmosphere–ocean feedbacks, which may
compound existing errors or generate new
biases, and a number of persistent biases
and errors remain in the climate models, as
well as limited understanding of some
aspects of the physical world

Continued investment in supercomputers, data
collection (including long-term observations)

and initiatives that support both the further
development and uptake of S2S forecasts, such

as the WMO WWRP–WCRP S2S project
(Vitart et al., 2012, 2016; Robertson et al.,

2014) and the WMO GFCS
Quantifying uncertainty Inherent errors and uncertainties in

probabilistic prediction systems due to
predictability limits and deficiencies in
models and initialization (e.g. Slingo and
Palmer, 2011)

Use the multimodel S2S datasets, such as the
NMME (http://www.cpc.ncep.noaa.gov/
products/NMME/data.html) and the S2S

project (http://apps.ecmwf.int/datasets/data/
s2s) repositories, to quantify forecast

uncertainty in a practical and relatively simple
way

Forecast verification Verification is critical in the context of
making S2S forecasts useful (and usable)
for applications

Develop new seamless verification methods,
such as time averaging windows that are equal

to the forecast lead time (e.g. 1 week means
used to verify forecasts at day 7; 2 week means

for forecasts at day 14; and so forth)
(Robertson et al., 2014)

Awareness of S2S Raising awareness of the ‘new’ S2S
timescale, data availability and potential
uses

Promote the NMME and S2S project
repositories, and possible integration of S2S
forecasts into the Regional Climate Outlook

Forums, which provide real-time regional
seasonal outlook products in several parts of
the world (https://www.wmo.int/pages/prog/
wcp/wcasp/clips/outlooks/climate_forecasts

.html)
Case studies Few ‘success stories’ of S2S predictions to

support promotion of S2S forecasts and
their integration into applications

Increase the number of case studies using S2S
hindcast repositories, demonstrating

retrospective forecast skill
Integration with social sciences to ensure
forecasts are useful and usable

Little current understanding and
characterizing of decision-making
frameworks and processes at relevant
spatial, temporal and end-user scales

Collaborate with the social science
communities to leverage existing knowledge
on information creation, communication, use

and valuation of S2S predictions

bringing together producers and users of knowledge across dis-
ciplines, are needed (Meinke et al., 2009).

4.6. Emerging sectors

There are many other sectors that could potentially benefit from
skilful S2S forecasts but which have not yet been explored in
detail. For example, S2S forecasts could be used to augment
the existing use of seasonal environmental management fore-
casts, such as providing additional decision support information
for marine fisheries and aquaculture (e.g. Spillman and Hob-
day, 2014) and wildfire risk management (Owen et al., 2012).
Similarly, S2S forecast applications that target the retail sector
could be used for advanced stock orders where the timing of
seasonal changes is important, or support preparedness ahead of
extreme weather events such as heat waves (e.g. Hudson et al.,
2015), tropical cyclones/hurricanes (e.g. Vitart et al., 2010) and
snow (e.g. Cohen, 2003).

In a broader sense, the value of weather forecasts needs to be
better understood and quantified. It has proved difficult, how-
ever, to isolate the benefits and to assess the economic value
of longer lead time forecasts in applications (Kumar, 2010).
The financial derivatives markets and insurance industry under-
stand the concept of weather-related risk and the application of
forecasts (e.g. through hedging strategies, weather-based deci-
sion rules, loss scenarios) perhaps better than any sector (e.g.

Zeng, 2000; Jewson and Caballero, 2003), which the weather
and climate community can benefit from. For the potential ben-
efits of S2S predictions to be fully realized, there needs to be
a focus on economic impacts and benefits, understanding the
asymmetry of the cost loss and benefit matrix, a measure of
sensitivity of the impact of particular weather phenomena and
an understanding of how they could influence decision-making
across sectors.

5. Challenges and opportunities of the S2S timescale

After three decades of research into seasonal climate predictabil-
ity and the development of dynamic prediction systems (Kirtman
et al., 2014), there is substantial evidence that dynamic S2S pre-
diction offers a significant opportunity to be useful to the appli-
cations community (Pegion and Sardeshmukh, 2011; Kirtman
et al., 2014). However, many challenges to the successful appli-
cation of S2S predictions are found, as summarized in Table 1).

The potential utility of longer lead time forecasts by the appli-
cations community, including both S2S and seasonal, is based on
end-user decision support (e.g. Morse et al., 2005). To achieve
this, an improved understanding of how perceptions, willing-
ness and ability to use information changes across predictive
timescales including S2S and an understanding of how a piece
of information goes from being useful to usable (Lemos et al.,
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2012) are required; for example Soares and Dessai (2016) pro-
vide examples of barriers and enablers to the uptake and use
of long-range seasonal forecasts in Europe. The current lack
of ‘success stories’ of S2S predictions (e.g. case studies that
focus on high-impact weather events or other successful uses)
needs to be addressed to support the promotion of S2S fore-
casts and their integration into applications, which in turn would
help raise awareness of the S2S prediction timescale and its
potential uses.

The fundamental limits to skill of longer lead time predic-
tions need to be identified to manage expectations of potential
users. Brunet et al. (2010) suggest that a practical first step is
to determine where the greatest potential for use of S2S fore-
casts exists and where the largest social benefit can be real-
ized. Here, the social sciences (e.g. Demuth et al., 2007) can
contribute by identifying effective mechanisms for generating
and communicating decision-relevant information, assessing the
integration, use and value of this information in decision-making,
transferring knowledge and experiences to other users (Brunet
et al., 2010) and understanding the context in which the informa-
tion can be usable (Ray and Webb, 2016). A similar approach
could advance the understanding of potential stakeholders, uses
and research needs in the S2S timescale, potentially avoid-
ing the applications community having unrealistic expectations
about S2S predictions and giving the forecasting community
an understanding of end-users’ limitations on what information
can be useful.

Raising awareness of both the S2S predictive timescale and the
availability of such data provides a unique opportunity for a par-
ticipatory approach across the weather and climate communities
to develop decision-relevant information for a range of sectoral
applications. The WWRP–WCRP S2S project’s database of S2S
forecasts co-hosted by ECMWF and the CMA (delayed behind
real time by 3 weeks but including hindcasts) is a significant
resource that will allow model output to be more widely assessed
to identify when and where there is skill, to understand better
the underlying processes and model weaknesses, and to develop
applications that can support decision-making.

To address the science challenges of understanding and
improving the predictive skill of S2S forecasts, identifying
sources of predictability (including locations and times of
skill), teleconnections to known climate modes, and quanti-
fying the limitations and uncertainties of S2S forecasting are
all areas of active research. Important modelling design issues
remain, including initialization techniques, initial conditions
(e.g. soil moisture, sea ice), model resolution and ensem-
ble size, ocean–atmosphere coupling, post-processing and
downscaling, and coordination between forecast producers,
which all need to be improved before the full potential of S2S
prediction can be realized (Vitart, 2014a). To address these
issues, improved quantitative information regarding uncertainty
in forecasts and probabilistic measures of forecast quality
in their verification (e.g. Palmer et al., 2004; DeWitt, 2005;
Doblas-Reyes et al., 2005; Slingo and Palmer, 2011) needs
to be included with S2S forecasts. There is also a growing
recognition that a multimodel ensemble strategy is a viable
approach for resolving some of the forecast uncertainty (e.g.
Doblas-Reyes et al., 2005; Palmer et al., 2008; Kirtman et al.,
2014), which will present additional data management and
communication issues.

6. Conclusions

Since Brunet et al. (2010) recommended that the weather and
climate communities collaborate to tackle the challenge of
providing skilful and usable subseasonal-to-seasonal (S2S)
forecasts jointly, many advancements have been made. Through
initiatives and data repositories such as the World Weather
Research Programme–World Climate Research Programme
S2S project and the North American Multimodel Ensemble,
some of the potential sectoral applications of S2S forecasts
can now be explored in earnest. However, their integration
into decision-making is neither easy nor straightforward (Lemos
et al., 2012). For instance, although the ability to forecast the spe-
cific details of high-impact events within the S2S timescale is not
yet possible (and perhaps may not be for some time), there exists
a growing repository of untapped predictive information that
presents tangible and realistic opportunities that can be explored
by the applications community for socio-economic benefits.

Forecasts on the S2S timescale need to be tailored to spe-
cific users’ needs and communicated in a way that allows the
applications community to be able to make informed decisions.
To achieve this, decision-makers and forecasters need to col-
laborate to determine essential S2S forecast attributes, includ-
ing determining appropriate thresholds and their usefulness in
decision-making, as well as their economic value (Hartmann
et al., 2002). Part of this involves the inclusion of realistic and
unbiased messages on forecast skill (or lack thereof), potential
usefulness and quantified uncertainties to manage expectations,
as well as the continued integration of S2S as a key component
in the concepts of seamless prediction and co-production.

There are three broad categories that require attention, each of
which presents its own set of challenges and opportunities: (1)
identifying where and when the skill of the S2S forecasts lies
and how it could be improved; (2) quantifying and addressing
systematic model deficiencies, errors and uncertainties; and (3)
communicating and delivering forecasts in collaboration with the
applications community such that they have value in a societal
decision-making context. A great return on investment in both
science and model development may be expected if S2S forecasts
can be successfully connected to societal applications (Vitart,
2014a); the goal over the next 5–10 years is therefore to gen-
erate useful, usable and actionable S2S forecast information and
services for (and with) the applications community that can be
integrated with existing risk management and decision-making
practices across sectors and timescales.
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